Oxidative stress-mediated apoptosis is involved in bisphenol S-induced reproductive toxicity in male C57BL/6 mice

氧化应激介导的细胞凋亡与双酚 S 诱导的雄性 C57BL/6 小鼠生殖毒性有关

阅读:8
作者:Wei Dai, Qing-Zhi He, Bi-Qi Zhu, Huai-Cai Zeng

Abstract

The reproductive toxicity of bisphenol S (BPS) in male mammals and its possible mechanism are not clear. We investigated the effects and possible mechanism of action of BPS on adult male C57BL/6 mice. We found that exposure to 200-mg/kg BPS resulted in a significant decrease in the sperm count in the caput/corpus and cauda epididymis, significantly decreased sperm motility, and significantly increased the sperm deformity. Histological evaluation revealed that BPS exposure caused a decrease of spermatozoa in the lumen of seminiferous tubules and a reduction in the proportion of Stage VII or VIII seminiferous tubules in the BPS-treated groups. Furthermore, ultrastructure analysis revealed BPS-induced mitochondrial damage and apoptosis in spermatogenic cells. Moreover, BPS exposure-induced oxidative stress in testicular tissues. Further, dUTP-biotin nick end labeling (TUNEL) assay showed that BPS induced the apoptosis of spermatogenic cells in a dose-dependent manner. BPS also significantly upregulated cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Fas, and FasL and significantly downregulated the Bcl-2/Bax ratio. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis. These results suggest that BPS-induced oxidative stress in the testis and spermatogenic cell apoptosis potentially impairs spermatogenesis and sperm function, which may be the mechanism of the reproductive toxicity of BPS. The Fas/FasL and mitochondrial signal pathways may be involved in BPS-induced oxidative stress-related apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。