Acetaldehyde and defective mismatch repair increase colonic tumours in a Lynch syndrome model with Aldh1b1 inactivation

乙醛和缺陷错配修复在 Aldh1b1 失活的林奇综合征模型中增加结肠肿瘤

阅读:6
作者:Guia Cerretelli, Ying Zhou, Mike F Müller, David J Adams, Mark J Arends

Abstract

ALDH1B1 expressed in the intestinal epithelium metabolises acetaldehyde to acetate, protecting against acetaldehyde-induced DNA damage. MSH2 is a key component of the DNA mismatch repair (MMR) pathway involved in Lynch syndrome (LS)-associated colorectal cancers. Here, we show that defective MMR (dMMR) interacts with acetaldehyde, in a gene/environment interaction, enhancing dMMR-driven colonic tumour formation in a LS murine model of Msh2 conditional inactivation (Lgr5-CreER; Msh2flox/-, or Msh2-LS) combined with Aldh1b1 inactivation. Conditional (Aldh1b1flox/flox) or constitutive (Aldh1b1-/-) Aldh1b1 knockout alleles combined with the conditional Msh2flox/- intestinal knockout mouse model of LS (Msh2-LS) received either ethanol, which is metabolised to acetaldehyde, or water. We demonstrated that 41.7% of ethanol-treated Aldh1b1flox/flox Msh2-LS mice and 66.7% of Aldh1b1-/- Msh2-LS mice developed colonic epithelial hyperproliferation and adenoma formation, in 4.5 and 6 months, respectively, significantly greater than 0% in water-treated control mice. Significantly higher numbers of dMMR colonic crypt foci precursors and increased plasma acetaldehyde levels were observed in ethanol-treated Aldh1b1flox/flox Msh2-LS and Aldh1b1-/- Msh2-LS mice compared with those in water-treated controls. Hence, ALDH1B1 loss increases acetaldehyde levels and DNA damage that interacts with dMMR to accelerate colonic, but not small intestinal, tumour formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。