IL-17A Attenuates IFN-λ Expression by Inducing Suppressor of Cytokine Signaling Expression in Airway Epithelium

IL-17A 通过诱导呼吸道上皮细胞中细胞因子信号表达抑制来减弱 IFN-λ 表达

阅读:7
作者:Mitsuru Niwa, Tomoyuki Fujisawa, Kazutaka Mori, Katsumasa Yamanaka, Hideki Yasui, Yuzo Suzuki, Masato Karayama, Hironao Hozumi, Kazuki Furuhashi, Noriyuki Enomoto, Yutaro Nakamura, Naoki Inui, Tetsuro Suzuki, Masato Maekawa, Takafumi Suda

Abstract

IFN-λ is a cytokine expressed in epithelial tissues and plays a central role in antiviral mucosal immune response. The expression of IFN-λ in the airway is impaired in chronic airway diseases (e.g., asthma, chronic obstructive pulmonary disease), which renders patients susceptible to viral infection. IL-17A is associated with asthma and chronic obstructive pulmonary disease pathogenesis; however, IL-17A regulation of IFN-λ expression remains unclear. The aim of the current study is to clarify IL-17A-mediated regulatory mechanisms of IFN-λ expression in human airway epithelial cells. In this study, we have shown that polyinosinic:polycytidylic acid (polyI:C) and influenza A virus (IAV) infection increased IFN-λ expression at mRNA and protein levels in primary cultures of normal human bronchial epithelial cells, whereas IL-17A attenuated polyI:C- or IAV-induced IFN-λ expression. IFN-λ receptor 1 knockdown and a JAK inhibitor, ruxolitinib, attenuated polyI:C-induced IFN-λ expression, confirming that a positive autocrine feedback loop, the IFN-λ receptor-JAK-STAT pathway, was involved in IFN-λ expression. In Western blotting analysis, we demonstrated that polyI:C and IAV infection induced STAT1 phosphorylation in normal human bronchial epithelial cells, whereas IL-17A suppressed polyI:C- or IAV-mediated STAT1 phosphorylation. Furthermore, we found that cotreatment with IL-17A and polyI:C or IAV infection synergistically increased suppressor of cytokine signaling (SOCS)1 and SOCS3 expression. SOCS1 small interfering RNA and SOCS3 small interfering RNA negated the inhibitory effect of IL-17A in polyI:C-induced IFN-λ expression by restoring attenuated STAT1 phosphorylation. Taken together, these findings indicate that IL-17A attenuates virus-induced IFN-λ expression by enhancing SOCS1 and SOCS3 expression to inhibit autocrine signaling loops in human airway epithelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。