Autophagy-independent induction of LC3B through oxidative stress reveals its non-canonical role in anoikis of ovarian cancer cells

通过氧化应激诱导不依赖自噬的 LC3B 揭示了其在卵巢癌细胞凋亡中的非典型作用

阅读:4
作者:Eswara Murali Satyavarapu, Ranjita Das, Chandan Mandal, Asima Mukhopadhyay, Chitra Mandal

Abstract

Cancer cells display abnormal redox metabolism. Autophagy, anoikis and reactive oxygen species (ROS) play a regulatory role during metastasis. LC3 is a well-known essential molecule for autophagy. Therefore, we wanted to explore the molecular interplay between autophagy, anoikis, and ROS in relation to LC3B. We observed enhanced LC3B level along with increased expression of p62 and modulation of other autophagy-related molecules (Atg 3, 5, 7, 12, 16L1 and Beclin1) by inducing oxidative-stress in ovarian cancer cells using a ROS-producing pro-oxidant molecule. Surprisingly, enhanced LC3B was unable to induce autophagosome formation rather promoted anoikis. ROS-induced inhibition of autophagosome-formation is possibly due to the instability of autophagy initiator, ULK1 complex. Moreover, such upregulation of LC3B via ROS enhanced several apoptotic molecules. Silencing LC3B reduced these apoptotic molecules and increased when overexpressed, suggesting its role in apoptosis. Furthermore, LC3B-dependent apoptosis was decreased by inhibiting ROS, indicating a possible link between ROS, LC3B, and apoptosis. Additionally, ROS-induced enhanced LC3B promoted detachment-induced cell death (anoikis). This was further reflected by reduced cell adhesion molecules (integrin-β3 and focal adhesion kinase) and mesenchymal markers (snail and slug). Our in vitro experimental data was further confirmed in primary tumors developed in syngeneic mice, which also showed ROS-mediated LC3B enhancement along with reduced autophagosomes, integrin-β3 and focal adhesion kinase ultimately leading to the decreased tumor mass. Additionally, primary cells from high-grade serous carcinoma patient's ascites exhibited LC3B enhancement and autophagy inhibition through ROS which provided a clinical relevance of our study. Taken together, this is the first evidence for a non-canonical role of LC3B in promoting anoikis in contrast to autophagy and may, therefore, consider as a potential therapeutic target molecule in ovarian cancer. Taken together, autophagy-inhibition may be an alternative approach to induce apoptosis/anoikis in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。