A novel aptamer-based small RNA delivery platform and its application to cancer therapy

一种新型的基于适配体的小RNA递送平台及其在癌症治疗中的应用

阅读:2
作者:Toshihiko Tanno ,Peng Zhang ,Christopher Bailey ,Yin Wang ,Wannaporn Ittiprasert ,Martin Devenport ,Pan Zheng ,Yang Liu

Abstract

Major challenges such as nuclease degradation, rapid renal clearance, non-specific delivery, poor cellular uptake and inflammatory response have limited the clinical application of small RNA-mediated gene silencing. To overcome these challenges, we designed a novel targeting small RNA delivery platform comprising of three oligonucleotides: (1) a guide RNA sequence, (2) part of a passenger sequence linked to a DNA aptamer via a PEG linker, and (3) another passenger sequence conjugated to cholesterol, which assemble through complementary base pair annealing. Remarkably, in the presence of magnesium, this molecule self-assembled into a nanoparticle with a hydrophobic cholesterol core, hydrophilic RNA oligonucleotide shell and PEG-linked DNA aptamer flare. The nanoparticles conferred protection to the RNA oligonucleotides against nuclease degradation, which increased bioavailability, and reduced systemic inflammatory responses. The aptamer allowed targeted delivery of RNA therapeutics through cell-specific surface markers, and once inside the cell, the nanoparticles induced lysosomal leakage that released the RNA oligonucleotides into the cytosol to achieve gene silencing. We created a c-Kit-targeting miR-26a delivery particle that specifically accumulated in c-Kit+ breast cancer, significantly increased T cell recruitment, and inhibited tumor growth. Regression of large established tumors were achieved when the nanoparticle was used in combination with anti-CTLA-4 monoclonal antibody.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。