Natural antisense RNA Foxk1-AS promotes myogenic differentiation by inhibiting Foxk1 activity

天然反义 RNA Foxk1-AS 通过抑制 Foxk1 活性促进成肌分化

阅读:8
作者:Chun Li, Hao Shen, Meng Liu, Siguang Li, Yuping Luo

Background

Natural antisense RNAs are RNA molecules that are transcribed from the opposite strand of either protein-coding or non-protein coding genes and have the ability to regulate the expression of their sense gene or several related genes. However, the roles of natural antisense RNAs in the maintenance and myogenesis of muscle stem cells remain largely unexamined.

Conclusion

The results indicated that Foxk1-AS represses Foxk1, thereby rescuing Mef2c activity and promoting myogenic differentiation of C2C12 cells and regeneration of damaged muscle fibres. Video Abstract.

Methods

We analysed myoblast differentiation and regeneration by overexpression and knockdown of Foxk1-AS using lentivirus and adeno-associated virus infection in C2C12 cells and damaged muscle tissues. Muscle injury was induced by BaCl2 and the regeneration and repair of damaged muscle tissues was assessed by haematoxylin-eosin staining and quantitative real-time PCR. The expression of myogenic differentiation-related genes was verified via quantitative real-time PCR, Western blotting and immunofluorescence staining.

Results

We identified a novel natural antisense RNA, Foxk1-AS, which is transcribed from the opposite strand of Foxk1 DNA and completely incorporated in the 3' UTR of Foxk1. Foxk1-AS targets Foxk1 and functions as a regulator of myogenesis. Overexpression of Foxk1-AS strongly inhibited the expression of Foxk1 in C2C12 cells and in tibialis anterior muscle tissue and promoted myoblast differentiation and the regeneration of muscle fibres damaged by BaCl2. Furthermore, overexpression of Foxk1-AS promoted the expression of Mef2c, which is an important transcription factor in the control of muscle gene expression and is negatively regulated by Foxk1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。