Transcriptional repression of histone deacetylase 3 by the histone demethylase KDM2A is coupled to tumorigenicity of lung cancer cells

组蛋白去甲基化酶 KDM2A 对组蛋白去乙酰化酶 3 的转录抑制与肺癌细胞的致瘤性有关

阅读:6
作者:Shilpa S Dhar, Hunain Alam, Na Li, Klaus W Wagner, Jimyung Chung, Yeo Won Ahn, Min Gyu Lee

Abstract

Dysregulated expression of histone methyltransferases and demethylases is an emerging epigenetic mechanism underlying cancer development and metastasis. We recently showed that the histone H3 lysine 36 (H3K36) demethylase KDM2A (also called FBXL11 and JHDM1A) is necessary for tumorigenic and metastatic capabilities of KDM2A-overexpressing non-small cell lung cancer (NSCLC) cells. Here, we report that KDM2A transcriptionally represses the histone deacetylase 3 (HDAC3) gene by removing methyl groups from dimethylated H3K36 at the HDAC3 promoter in KDM2A-overexpressing NSCLC cells. KDM2A depletion reduced expression levels of cell cycle-associated genes (e.g. CDK6) and cell invasion-related genes (e.g. NANOS1); these levels were rescued by ectopic expression of KDM2A but not its catalytic mutant. These genes were occupied and down-regulated by HDAC3. HDAC3 knockdown significantly recovered the proliferation and invasiveness of KDM2A-depleted NSCLC cells as well as the levels of CDK6 and NANOS1 expression in these cells. Similar to their previously reported functions in other cell types, CDK6 and NANOS1 were required for the proliferation and invasion, respectively, of KDM2A-overexpressing NSCLC cells. In a mouse xenograft model, HDAC3 depletion substantially restored the tumorigenic ability of KDM2A knockdown cells. These findings reveal a novel cancer-epigenetic pathway in which the antagonistic effect of KDM2A on HDAC3 expression releases cell cycle-associated genes and cell invasion-related genes from HDAC3 repression and indicate the importance of this pathway for tumorigenicity and invasiveness of KDM2A-overexpressing NSCLC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。