Evolutionarily conserved coding properties favour the neuronal representation of heterospecific signals of a sympatric katydid species

进化保守的编码特性有利于同域螽斯物种异质信号的神经元表征

阅读:6
作者:Konstantinos Kostarakos, Heiner Römer

Abstract

To function as a mechanism in premating isolation, the divergent and species-specific calling songs of acoustic insects must be reliably processed by the afferent auditory pathway of receivers. Here, we analysed the responses of interneurons in a katydid species that uses long-lasting acoustic trills and compared these with previously reported data for homologous interneurons of a sympatric species that uses short chirps as acoustic signals. Some interneurons of the trilling species respond exclusively to the heterospecific chirp due to selective, low-frequency tuning and "novelty detection". These properties have been considered as evolutionary adaptations in the sensory system of the chirper, which allow it to detect signals effectively during the simultaneous calling of the sympatric sibling species. We propose that these two mechanisms, shared by the interneurons of both species, did not evolve in the chirper to guarantee its ability to detect the chirp under masking conditions. Instead we suggest that chirpers evolved an additional, 2-kHz component in their song and exploited pre-existing neuronal properties for detecting their song under masking noise. The failure of some interneurons to respond to the conspecific song in trillers does not prevent intraspecific communication, as other interneurons respond to the trill.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。