Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK

跨膜形式的 AGRIN 诱导过程的形成需要脂筏以及 Fyn 和 MAPK 的激活

阅读:7
作者:Rene Ramseger, Robin White, Stephan Kröger

Abstract

Overexpression or clustering of the transmembrane form of the extracellular matrix heparan sulfate proteoglycan agrin (TM-agrin) induces the formation of highly dynamic filopodia-like processes on axons and dendrites from central and peripheral nervous system-derived neurons. Here we show that the formation of these processes is paralleled by a partitioning of TM-agrin into lipid rafts, that lipid rafts and transmembrane-agrin colocalize on the processes, that extraction of lipid rafts with methyl-beta-cyclodextrin leads to a dose-dependent reduction of process formation, that inhibition of lipid raft synthesis prevents process formation, and that the continuous presence of lipid rafts is required for the maintenance of the processes. Association of TM-agrin with lipid rafts results in the phosphorylation and activation of the Src family kinase Fyn and subsequently in the phosphorylation and activation of MAPK. Inhibition of Fyn or MAPK activation inhibits process formation. These results demonstrate that the formation of filopodia-like processes by TM-agrin is the result of the activation of a complex intracellular signaling cascade, supporting the hypothesis that TM-agrin is a receptor or coreceptor on neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。