Eleutheroside B1 mediates its anti-influenza activity through POLR2A and N-glycosylation

刺五加苷 B1 通过 POLR2A 和 N-糖基化介导其抗流感活性

阅读:5
作者:Wen Yan, Chunge Zheng, Jiayang He, Wenjie Zhang, Xin-An Huang, Xiong Li, Yutao Wang, Xinhua Wang

Abstract

Influenza viruses represent a serious threat to human health. Although our research group has previously demonstrated the antiviral and anti‑inflammatory activities of eleutheroside B1, a detailed explanation of the mechanism by which it is effective against the influenza virus remains to be elucidated. In the present study, the transcriptomic responses of influenza A virus‑infected lung epithelial cells (A549) treated with eleutheroside B1 were investigated using high‑throughput RNA sequencing, and potential targets were identified using a molecular docking technique, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assay, and DNA methylation analysis. The transcriptomic data revealed that there are 1,871 differentially expressed genes (DEGs) between the cells infected with the influenza virus strain variant PR8, and the cells infected with PR8 and treated with eleutheroside B1. Among the DEGs, RNA polymerase II subunit A (POLR2A; encoding the largest subunit of RNA polymerase II) and mannosidase α class II member 1 (MAN2A1) were selected from the molecular docking analysis with eleutheroside B1. The docking score of Drosophila melanogaster MAN2A1 (3BVT) was 11.3029, whereas that of POLR2A was 9.0133. The RT‑qPCR results demonstrated that the expression levels of host genes (MAN2A2, POLR2A) and viral genes (PA, PB1, PB2, HA) were downregulated following eleutheroside B1 treatment. Bisulfite‑sequencing PCR was performed to investigate whether eleutheroside B1 was able to modify the DNA methylation of POLR2A, and the results suggested that the average proportion of methylated CpGs (‑222‑72 bp) increased significantly following treatment with eleutheroside B1. Taken together, these findings suggested that eleutheroside B1 may affect N‑glycan biosynthesis, the chemokine signaling pathway, cytokine‑cytokine receptor interaction and, in particular, may target the POLR2A to inhibit the production of influenza virus genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。