Characterization of doxycycline-mediated inhibition of Marfan syndrome-associated aortic dilation by multiphoton microscopy

通过多光子显微镜表征强力霉素介导的马凡氏综合征相关主动脉扩张的抑制

阅读:5
作者:Arash Y Tehrani #, Jason Z Cui #, T Bucky Jones, Ester Hotova, Monica Castro, Pascal Bernatchez, Cornelis van Breemen, Mitra Esfandiarei

Abstract

Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root widening and aneurysm if unmanaged. We have previously reported doxycycline, a nonselective matrix metalloproteinases (MMPs) inhibitor, to attenuate aortic root widening and improve aortic contractility and elasticity in MFS mice. We were also first to use multiphoton microscopy, a non-invasive and label-free imaging technique, to quantify and link the aortic ultrastructure to possible changes in the skin dermis. Here, we aimed to assess the effects of long-term doxycycline treatment on the aortic ultrastructure and skin dermis of MFS mice through immunohistochemical evaluation and quantification of elastic and collagen content and morphology using multiphoton microscopy. Our results demonstrate a rescue of aortic elastic fiber fragmentation and disorganization accompanied by a decrease in MMP-2 and MMP-9 expression within the aortic wall in doxycycline-treated MFS mice. At 12 months of age, reduced skin dermal thickness was observed in both MFS and control mice, but only dermal thinning in MFS mice was rescued by doxycycline treatment. MMP-2 and MMP-9 expression was reduced in the skin of doxycycline-treated MFS mice. A decrease in dermal thickness was found to be positively associated with increased aortic root elastin disorganization and wall thickness. Our findings confirm the beneficial effects of doxycycline on ultrastructural properties of aortic root as well as on skin elasticity and structural integrity in MFS mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。