An auto-photoacoustic melanin-based drug delivery nano-platform for self-monitoring of acute kidney injury therapy via a triple-collaborative strategy

基于自光声黑色素的药物输送纳米平台,通过三重协作策略自我监测急性肾损伤治疗

阅读:5
作者:Xuhui Zhao, Jinghua Sun, Jie Dong, Chunyan Guo, Wenwen Cai, Juanjuan Han, Hao Shen, Shuxin Lv, Ruiping Zhang

Significance

A targeting nanodrug delivery platform was developed by loading PJ34 and coupling anti-GPR97 with melanin nanoparticles (GMP nanoparticles) for photoacoustic self-monitoring and triple-collaborative treatment (antioxidant, antiapoptotic, and anti-inflammatory) of acute kidney injury (AKI). Further studies indicated that the Keap-1/Nrf2/HO-1 and PARP-1/AIF signaling pathways are involved in the therapeutic mechanisms to alleviate AKI. Immunohistochemical staining and routine blood test confirmed the anti-inflammatory performance of GMP nanoparticles. Compared to exogenous nanomaterials, we used endogenous melanin with broad ROS scavenging capacity as the nanocarrier and antioxidant, which not only overcomes the defects of high specificity, potential toxicity, low loading capacity, and high cost but also shows good biosafety and photoacoustic imaging performance in vivo.

Statement of significance

A targeting nanodrug delivery platform was developed by loading PJ34 and coupling anti-GPR97 with melanin nanoparticles (GMP nanoparticles) for photoacoustic self-monitoring and triple-collaborative treatment (antioxidant, antiapoptotic, and anti-inflammatory) of acute kidney injury (AKI). Further studies indicated that the Keap-1/Nrf2/HO-1 and PARP-1/AIF signaling pathways are involved in the therapeutic mechanisms to alleviate AKI. Immunohistochemical staining and routine blood test confirmed the anti-inflammatory performance of GMP nanoparticles. Compared to exogenous nanomaterials, we used endogenous melanin with broad ROS scavenging capacity as the nanocarrier and antioxidant, which not only overcomes the defects of high specificity, potential toxicity, low loading capacity, and high cost but also shows good biosafety and photoacoustic imaging performance in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。