Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells

紫檀芪抑制营养代谢并通过激活 AMPK 诱导多发性骨髓瘤细胞凋亡

阅读:5
作者:Huiling Mei, Yu Xiang, Heng Mei, Bin Fang, Qiuguo Wang, Dedong Cao, Yu Hu, Tao Guo

Abstract

Multiple myeloma (MM) cells are characterized by an abnormal nutrient metabolism that is distinct from normal plasma cells. Pterostilbene (PTE), a bioactive component of blueberries, has been demonstrated to induce apoptosis in multiple types of cancer cell. The present study evaluated whether PTE treatment affected the survival of MM cells from a metabolic perspective, and the potential mechanisms of this. It was observed that the administration of PTE induced apoptosis, which was mediated by the increased activation of AMP‑activated protein kinase (AMPK). Once activated, AMPK decreased the expression and/or activity of key lipogenic enzymes, including fatty acid synthase and acetyl‑CoA carboxylase. In addition, the activation of AMPK suppressed the downstream substrate, mechanistic target of rapamycin, which dephosphorylated eukaryotic initiation factor 4E‑binding protein 1, leading to a general decrease in mRNA translation. Pre‑treatment with the AMPK inhibitor compound C prior to PTE treatment compromised the anti‑myeloma apoptosis effect, suggesting the critical role of AMPK in mediating PTE‑induced cell toxicity. Consistent results were obtained in vivo. Finally, autophagy was adaptively upregulated subsequent to PTE treatment; the pro‑apoptotic efficacy of PTE was potentiated once autophagic flux was inhibited by 3‑methyladenine. Taken together, these data demonstrated that PTE exerts anti‑tumor effects on MM cells via AMPK‑induced nutrient suppression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。