Saikosaponin d modulates the polarization of tumor-associated macrophages by deactivating the PI3K/AKT/mTOR pathway in murine models of pancreatic cancer

柴胡皂苷 d 通过抑制小鼠胰腺癌模型中的 PI3K/AKT/mTOR 通路来调节肿瘤相关巨噬细胞的极化

阅读:7
作者:Xinsheng Xu, Lihua Cui, Lanqiu Zhang, Lei Yang, Yuzhen Zhuo, Caixia Li

Abstract

The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) poses a major obstacle to traditional and immunomodulatory cancer therapies and is closely associated with macrophage polarization. Saikosaponin d (SSd), a major active component of triterpene saponins derived from Bupleurum falcatum, has anti-inflammatory and antitumor activities. However, whether SSd can regulate immune cells during the development of the TME in PDAC remains unknown. In the present study, we aimed to analyze the role of SSd in regulating immune cells in the PDAC TME, especially the polarization of macrophages, and examine the related mechanisms. An orthotopic PDAC cancer model was used to investigate the antitumor activities and the regulation of immune cells in vivo. In vitro, bone marrow mononuclear (BM-MNC) cells and RAW 264.7 cells were used to induce the M2 macrophage phenotype and examine the effects and molecular mechanism of SSd on M2 macrophage polarization. The results revealed that SSd could directly inhibit the apoptosis and invasion of pancreatic cancer cells, modulate the immunosuppressive microenvironment and reactivate the local immune response, especially by decreasing the shift toward M2 macrophage polarization by downregulating phosphorylated STAT6 levels and the PI3K/AKT/mTOR signaling pathway. Furthermore, 740-Y-P (PI3K activator) was used to verify that SSd inhibited M2 polarization in RAW264.7 cells via the PI3K/AKT/mTOR signaling pathway. In conclusion, this study provided experimental evidence of the antitumor effect of SSd, especially in the regulation of M2 macrophage polarization, and demonstrated that SSd may be a promising therapeutic agent in PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。