Conclusion
The risk score signature based on the metabolism and immune molecular subtypes can accurately predict the prognosis and guide treatments of PC, meanwhile, the metabolism-immune biomarkers may provide novel target therapy for PC.
Methods
Unsupervised consensus clustering and ssGSEA analysis were utilized to construct molecular subtypes related to metabolism and immunity. Diverse metabolic and immune subtypes were characterized by distinct prognoses and TME. Afterward, we filtrated the overlapped genes based on the differentially expressed genes (DEGs) between the metabolic and immune subtypes by lasso regression and Cox regression, and used them to build risk score signature which led to PC patients was categorized into high- and low-risk groups. Nomogram were built to predict the survival rates of each PC patient. RT-PCR, in vitro cell proliferation assay, PC organoid, immunohistochemistry staining were used to identify key oncogenes related to PC
Results
High-risk patients have a better response for various chemotherapeutic drugs in the Genomics of Drug Sensitivity in Cancer (GDSC) database. We built a nomogram with the risk group, age, and the number of positive lymph nodes to predict the survival rates of each PC patient with average 1-year, 2-year, and 3-year areas under the curve (AUCs) equal to 0.792, 0.752, and 0.751. FAM83A, KLF5, LIPH, MYEOV were up-regulated in the PC cell line and PC tissues. Knockdown of FAM83A, KLF5, LIPH, MYEOV could reduce the proliferation in the PC cell line and PC organoids
