Genome-wide DNA Methylation Signatures Are Determined by DNMT3A/B Sequence Preferences

全基因组 DNA 甲基化特征由 DNMT3A/B 序列偏好决定

阅读:6
作者:Shi-Qing Mao, Sergio Martínez Cuesta, David Tannahill, Shankar Balasubramanian

Abstract

Cytosine methylation is an important epigenetic mark, but how the distinctive patterns of DNA methylation arise remains elusive. For the first time, we systematically investigated how these patterns can be imparted by the inherent enzymatic preferences of mammalian de novo DNA methyltransferases in vitro and the extent to which this applies in cells. In a biochemical experiment, we subjected a wide variety of DNA sequences to methylation by DNMT3A or DNMT3B and then applied deep bisulfite sequencing to quantitatively determine the sequence preferences for methylation. The data show that DNMT3A prefers CpG and non-CpG sites followed by a 3'-pyrimidine, whereas DNMT3B favors a 3'-purine. Overall, we show that DNMT3A has a sequence preference for a TNC[G/A]CC context, while DNMT3B prefers TAC[G/A]GC. We extended our finding using publicly available data from mouse Dnmt1/3a/3b triple-knockout cells in which reintroduction of either DNMT3A or DNMT3B expression results in the acquisition of the same enzyme specific signature sequences observed in vitro. Furthermore, loss of DNMT3A or DNMT3B in human embryonic stem cells leads to a loss of methylation at the corresponding enzyme specific signatures. Therefore, the global DNA methylation landscape of the mammalian genome can be fundamentally determined by the inherent sequence preference of de novo methyltransferases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。