Dormant Pluripotent Cells Emerge during Neural Differentiation of Embryonic Stem Cells in a FoxO3-Dependent Manner

休眠多能细胞在胚胎干细胞的神经分化过程中以 FoxO3 依赖的方式出现

阅读:10
作者:Megumi Ikeda, Fumiko Toyoshima

Abstract

One major concern over the clinical application of embryonic stem cell (ESC)-derived cells is the potentiation of latent tumorigenicity by residual undifferentiated cells. Despite the use of intensive methodological approaches to eliminate residual undifferentiated cells, the properties of these cells remain elusive. Here, we show that under a serum-free neural differentiation condition, residual undifferentiated cells markedly delay progression of their cell cycle without compromising their pluripotency. This dormant pluripotency was maintained during reculture of the cells under a serum-free condition, whereas upon serum stimulation, the cells exited the dormant state and restarted proliferation and differentiation into all three germ layers. Microarray analysis revealed a set of genes that is significantly upregulated in the dormant ESCs compared with their levels of regulation in proliferating ESCs. Among them, we identified the transcription factor Forkhead box O3 (FoxO3) to be an essential regulator of the maintenance of pluripotency in dormant ESCs. Our study demonstrates that the transition into the dormant state endows residual undifferentiated cells with FoxO3-dependent and leukemia inhibitory factor/serum-independent pluripotency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。