Population calcium responses of Purkinje cells in the oculomotor cerebellum driven by nonvisual input

非视觉输入驱动小脑动眼神经浦肯野细胞群体钙反应

阅读:8
作者:Alexander S Fanning, Amin Md Shakhawat, Jennifer L Raymond

Abstract

The climbing fiber input to the cerebellum conveys instructive signals that can induce synaptic plasticity and learning by triggering complex spikes accompanied by large calcium transients in Purkinje cells. In the cerebellar flocculus, which supports oculomotor learning, complex spikes are driven by image motion on the retina, which could indicate an oculomotor error. In the same neurons, complex spikes also can be driven by nonvisual signals. It has been shown that the calcium transients accompanying each complex spike can vary in amplitude, even within a given cell, therefore, we compared the calcium responses associated with the visual and nonvisual inputs to floccular Purkinje cells. The calcium indicator GCaMP6f was selectively expressed in Purkinje cells, and fiber photometry was used to record the calcium responses from a population of Purkinje cells in the flocculus of awake behaving mice. During visual (optokinetic) stimuli and pairing of vestibular and visual stimuli, the calcium level increased during contraversive retinal image motion. During performance of the vestibulo-ocular reflex in the dark, calcium increased during contraversive head rotation and the associated ipsiverse eye movements. The amplitude of this nonvisual calcium response was comparable to that during conditions with retinal image motion present that induce oculomotor learning. Thus, population calcium responses of Purkinje cells in the cerebellar flocculus to visual and nonvisual input are similar to what has been reported previously for complex spikes, suggesting that multimodal instructive signals control the synaptic plasticity supporting oculomotor learning.NEW & NOTEWORTHY It was long known that the climbing fiber input to Purkinje cells in the cerebellar flocculus conveys visual feedback about the accuracy of image-stabilizing oculomotor reflexes. More recently, the same climbing fibers were reported to carry nonvisual signals. Here, we report that both visual and nonvisual inputs can elicit robust calcium responses in the Purkinje cells, suggesting that the instructive signals guiding oculomotor plasticity are multimodal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。