Superior mechanical, electrical, dielectric, and EMI shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites

乙烯丙烯二烯单体 (EPDM) 基炭黑复合材料具有优异的机械、电气、介电和 EMI 屏蔽性能

阅读:9
作者:Mostafizur Rahaman

Abstract

In this study, the mechanical, electrical, dielectric, and electromagnetic interference (EMI) shielding properties of ethylene propylene diene monomer (EPDM) based carbon black composites, namely high abrasion furnace (HAF) and conductive Printex blacks, were investigated and their effectiveness compared. The results show that Printex black filled composites exhibited superior properties in all aspects compared to HAF filled composites. The electrical percolation threshold value of Printex black filled composites was approximately 1/2 to 1/3 lower compared to HAF black filled composites based on classical theory and the Sigmoidal model. Moreover, the tensile modulus, dielectric permittivity, and EMI shielding efficiency (SE) of the Printex black filled composites were 4.6 times, in the order of 106 at 1 kHz, and 6.65 times improved compared to HAF black filled composites at their 40 phr loadings, respectively. The Printex black filled 40 phr loaded composite showed an EMI SE of 49.94 dB that is 99.999% the attenuation of EM radiation. These properties can be attributed to the high structure of Printex black, which facilitates the ease of formation of the conductive channel through the polymer matrix, higher reinforcement, higher interfacial polarization, and high absorption of radiation. These properties were compared with some published literature on carbon black filled composites and it was found that the results of the Printex black filled composites are highly competitive with the published work. The results show that these composites are highly effective for load bearing materials, supercapacitors, and EM radiation protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。