Molecular Modeling Predicts Novel Antibody Escape Mutations in the Respiratory Syncytial Virus Fusion Glycoprotein

分子建模预测呼吸道合胞病毒融合糖蛋白中的新型抗体逃逸突变

阅读:6
作者:Sierra S Beach, McKenna A Hull, F Marty Ytreberg, Jagdish Suresh Patel, Tanya A Miura

Abstract

Monoclonal antibodies are increasingly used for the prevention and/or treatment of viral infections. One caveat of their use is the ability of viruses to evolve resistance to antibody binding and neutralization. Computational strategies to identify viral mutations that may disrupt antibody binding would leverage the wealth of viral genomic sequence data to monitor for potential antibody-resistant mutations. The respiratory syncytial virus is an important pathogen for which monoclonal antibodies against the fusion (F) protein are used to prevent severe disease in high-risk infants. In this study, we used an approach that combines molecular dynamics simulations with FoldX to estimate changes in free energy in F protein folding and binding to the motavizumab antibody upon each possible amino acid change. We systematically selected 8 predicted escape mutations and tested them in an infectious clone. Consistent with our F protein stability predictions, replication-effective viruses were observed for each selected mutation. Six of the eight variants showed increased resistance to neutralization by motavizumab. Flow cytometry was used to validate the estimated (model-predicted) effects on antibody binding to F. Using surface plasmon resonance, we determined that changes in the on-rate of motavizumab binding were associated with the reduced affinity for two novel escape mutations. Our study empirically validated the accuracy of our molecular modeling approach and emphasized the role of biophysical protein modeling in predicting viral resistance to antibody-based therapeutics that can be used to monitor the emergence of resistant viruses and to design improved therapeutic antibodies. IMPORTANCE Respiratory syncytial virus (RSV) causes severe disease in young infants, particularly those with heart or lung diseases or born prematurely. Because no vaccine is currently available, monoclonal antibodies are used to prevent severe RSV disease in high-risk infants. While it is known that RSV evolves to avoid recognition by antibodies, screening tools that can predict which changes to the virus may lead to antibody resistance are greatly needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。