Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography

反离子优化显著提高静电排斥-亲水相互作用色谱中磷酸肽和糖肽的选择性

阅读:5
作者:Yusi Cui, Dylan Nicholas Tabang, Zishan Zhang, Min Ma, Andrew J Alpert, Lingjun Li

Abstract

A well-hydrated counterion can selectively and dramatically increase retention of a charged analyte in hydrophilic interaction chromatography. The effect is enhanced if the column is charged, as in electrostatic repulsion-hydrophilic interaction chromatography (ERLIC). This combination was exploited in proteomics for the isolation of peptides with certain post-translational modifications (PTMs). The best salt additive examined was magnesium trifluoroacetate. The well-hydrated Mg+2 ion promoted retention of peptides with functional groups that retained negative charge at low pH, while the poorly hydrated trifluoroacetate counterion tuned down the retention due to the basic residues. The result was an enhancement in selectivity ranging from 6- to 66-fold. These conditions were applied to a tryptic digest of mouse cortex. Gradient elution produced fractions enriched in peptides with phosphate, mannose-6-phosphate, and N- and O-linked glycans. The numbers of such peptides identified either equaled or exceeded the numbers afforded by the best alternative methods. This method is a productive and convenient way to isolate peptides simultaneously that contain a number of different PTMs, facilitating study of proteins with "crosstalk" modifications. The fractions from the ERLIC column were desalted prior to C-18-reversed phase liquid chromatography-tandem mass spectrometry analysis. Between 47-100% of the peptides with more than one phosphate or sialyl residue or with a mannose-6 phosphate group were not retained by a C-18 cartridge but were retained by a cartridge of porous graphitic carbon. This finding implies that the abundance of such peptides may have been significantly underestimated in some past studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。