AEG-1 Knockdown Sensitizes Glioma Cells to Radiation Through Impairing Homologous Recombination Via Targeting RFC5

AEG-1 敲低可通过靶向 RFC5 损害同源重组来增强胶质瘤细胞对辐射的敏感性

阅读:4
作者:Xu Zhao, Yuchen Sun, Xuanzi Sun, Jing Li, Xiaobo Shi, Zhinan Liang, Yuan Ma, Xiaozhi Zhang

Abstract

Radiotherapy is the most important adjuvant treatment for glioma; however, radioresistance is the major cause for inevitable recurrence and poor survival of glioma patients. Thus, this study aims to investigate the effect of astrocyte elevated gene-1 (AEG-1) on the radiosensitivity of glioma cells. Immunohistochemistry assay found that AEG-1 was generally overexpressed in glioma tissues and was correlated with poor clinicopathological features of glioma patients. AEG-1 knockdown inhibited proliferation of glioma cells. And γ-H2AX foci assay, colony formation assay, and flow cytometry analysis demonstrated that AEG-1 depletion enhanced radiosensitivity and promoted apoptosis as well as cell cycle arrest in G2 phase of glioma cells treated by ionizing radiation. Moreover, replication factor C5 (RFC5) was screened as the target of AEG-1 by using Affymetrix human gene expression array, and RFC5 expression was downregulated in AEG-1 knockdown glioma cells. Mechanistically, AEG-1 knockdown impaired homologous recombination repair activity induced by radiation through inhibiting RFC5 expression. Furthermore, the Kaplan-Meier analysis and multivariate Cox regression analysis indicated that high levels of AEG-1 and RFC5 were related to poor prognosis of glioma patients treated with radiotherapy. Taken together, our findings indicate that AEG-1 may serve as a reliable radiosensitizing target for glioma radiotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。