Towards a broader view of the metabolome: untargeted profiling of soluble and bound polyphenols in plants

更广泛地了解代谢组:非靶向分析植物中的可溶性和结合性多酚

阅读:5
作者:Maria Doppler, Christoph Bueschl, Florian Ertl, Jakob Woischitzschlaeger, Alexandra Parich, Rainer Schuhmacher

Abstract

Phenylalanine (Phe) is a central precursor for numerous secondary plant metabolites with a multitude of biological functions. Recent studies on the fungal disease Fusarium head blight in wheat showed numerous Phe-derived defence metabolites to be induced in the presence of the pathogen. These studies also suggest a partial incorporation of Phe-derived secondary metabolites into the cell wall. To broaden the view of the metabolome to bound Phe derivatives, an existing approach using 13C-labelled Phe as tracer was extended. The developed workflow consists of three successive extractions with an acidified acetonitrile-methanol-water mixture to remove the soluble plant metabolites, followed by cell wall hydrolysis with 4M aqueous NaOH, acidification with aqueous HCl, and liquid-liquid extraction of the hydrolysate with ethyl acetate. The untargeted screening of Phe-derived metabolites revealed 156 soluble compounds and 90 compounds in the hydrolysed samples including known cell wall constituents like ferulic acid, coumaric acid, and tricin. Forty-nine metabolites were found exclusively in the hydrolysate. The average cumulative extraction yield of the soluble metabolites was 99.6%, with a range of 91.8 to 100%. Repeatability coefficients of variation of the protocol ranged from 10.5 to 25.9%, with a median of 16.3%. To demonstrate the suitability of the proposed method for a typical metabolomics application, mock-treated and Fusarium graminearum-treated wheat samples were compared. The study revealed differences between the hydrolysates of the two sample types, confirming the differential incorporation of Phe-derived metabolites into the cell wall under infection conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。