Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis

脓毒症大鼠模型中内质网应激上调与膈肌收缩功能障碍有关

阅读:6
作者:Guangyu Jiao, Liying Hao, Mengmeng Wang, Bin Zhong, Miao Yu, Shuang Zhao, Pingping Wang, Rui Feng, Shutao Tan, Liu Chen

Abstract

Sepsis often causes diaphragm contractile dysfunction. Endoplasmic reticulum (ER) stress has been implicated in muscle contractile dysfunction. However, it remains unknown if ER stress occurs in the diaphragm during sepsis. In the present study, rats were divided into 4 groups and received placebo or one of three durations of endotoxin treatment (24, 48 h and 7 days). Isometric contractile force of the diaphragm was measured and lung wet-to-dry ratio (W/D) was calculated. Hematoxylin and eosin (H&E) staining of lung tissue was performed and electron microscopy assessed ER damage in the diaphragm during sepsis. The mRNA and protein expression of glucose‑regulated protein 78 kDa (GRP78), glucose-regulated protein 94 kDa (GRP94), C/EBP homologous protein (CHOP), endoplasmic reticulum protein 44 (ERP44), protein disulfide-isomerase like protein (ERP57) and protein disulfide isomerase family A member 4 (ERP72) in diaphragm muscles were measured using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The level of cleaved caspase-12 was analyzed by western blot analysis. The results demonstrated that sepsis increased lung W/D. H&E staining revealed that sepsis caused alveolar congestion, hemorrhage and rupture. Swollen and distended ER was observed using electron microscopy during sepsis and decreased diaphragm contractile function was also observed. The expression levels of ER stress markers (GRP78, GRP94, CHOP, ERP44, ERP57 and ERP72) and the level of cleaved caspase‑12 were significantly elevated in septic rats compared with control rats, particularly in the 48 h group. In conclusion, the present study indicated that weakened diaphragm contraction and damaged ER in septic rats was associated with increased expression of ER stress markers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。