Profiling the Metabolism of Human Cells by Deep 13C Labeling

通过深度13C标记分析人体细胞代谢

阅读:5
作者:Nina Grankvist, Jeramie D Watrous, Kim A Lagerborg, Yaroslav Lyutvinskiy, Mohit Jain, Roland Nilsson

Abstract

Studying metabolic activities in living cells is crucial for understanding human metabolism, but facile methods for profiling metabolic activities in an unbiased, hypothesis-free manner are still lacking. To address this need, we here introduce the deep-labeling method, which combines a custom 13C medium with high-resolution mass spectrometry. A proof-of-principle study on human cancer cells demonstrates that deep labeling can identify hundreds of endogenous metabolites as well as active and inactive pathways. For example, protein and nucleic acids were almost exclusively de novo synthesized, while lipids were partly derived from serum; synthesis of cysteine, carnitine, and creatine was absent, suggesting metabolic dependencies; and branched-chain keto acids (BCKAs) were formed and metabolized to short-chain acylcarnitines, but did not enter the tricarboxylic acid cycle. Remarkably, BCKAs could substitute for essential amino acids to support growth. The deep-labeling method may prove useful to map metabolic phenotypes across a range of cell types and conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。