Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes

转录组学以外的细胞状态:整合 hiPSC 衍生心肌细胞的结构组织和基因表达

阅读:5
作者:Kaytlyn A Gerbin, Tanya Grancharova, Rory M Donovan-Maiye, Melissa C Hendershott, Helen G Anderson, Jackson M Brown, Jianxu Chen, Stephanie Q Dinh, Jamie L Gehring, Gregory R Johnson, HyeonWoo Lee, Aditya Nath, Angelique M Nelson, M Filip Sluzewski, Matheus P Viana, Calysta Yan, Rebecca J Zaunbreche

Abstract

Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。