Redox Potential-Sensitive N-Acetyl Cysteine-Prodrug Nanoparticles Inhibit the Activation of Microglia and Improve Neuronal Survival

氧化还原电位敏感的 N-乙酰半胱氨酸前药纳米粒子抑制小胶质细胞的激活并提高神经元存活率

阅读:9
作者:Eleni Markoutsa, Peisheng Xu

Abstract

One hallmark of neuroinflammation is the activation of microglia, which triggers the production and release of reactive oxygen species (ROS), nitrate, nitrite, and cytokines. N-Acetyl cysteine (NAC) is a free radical scavenger that is involved in the intracellular and extracellular detoxification of reactive oxygen species in the brain. However, the clinical application of NAC is limited by its low bioavailability and short half-life. Herein, NAC was conjugated to a polymer through a disulfide bond to form a NAC-prodrug nanoparticle (NAC-NP). Dynamic light scattering found that the NAC-NP has a size of around 50 nm. In vitro studies revealed that the release of NAC from NAC-NP is responsive to its environmental redox potential. For mimicking neuroinflammation in vitro, microglial cells were stimulated by a lipopolysaccharide (LPS), and the effect of NAC-NP on activated microglia was investigated. The study found that the morphology as well as the expression of microgliosis marker Iba-1 of the cells treated with NAC-NPs and LPS were close to those of control cells, indicating that NAC-NPs can inhibit the activation of microglia stimulated by LPS. Compared with free NAC, the production of ROS, NO3-, NO2-, tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β from the LPS-stimulated microglia was considerably decreased when the cells were pretreated with NAC-NPs. Furthermore, LPS-induced microglial phagocytocis of neurons was inhibited in the presence of NAC-NPs. These results indicated that NAC-NPs are more effective than free NAC for reversing the effect of LPS on microglia and subsequently protecting neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。