Different mechanisms of Na+ uptake and ammonia excretion by the gill and yolk sac epithelium of early life stage rainbow trout

早期生命阶段虹鳟鱼鳃和卵黄囊上皮吸收 Na+ 和排泄氨的不同机制

阅读:12
作者:Alex M Zimmer, Jonathan M Wilson, Patricia A Wright, Junya Hiroi, Chris M Wood

Abstract

In rainbow trout, the dominant site of Na+ uptake (JNa,in) and ammonia excretion (Jamm) shifts from the skin to the gills over development. Post-hatch (PH; 7 days post-hatch) larvae utilize the yolk sac skin for physiological exchange, whereas by complete yolk sac absorption (CYA; 30 days post-hatch), the gill is the dominant site. At the gills, JNa,in and Jamm occur via loose Na+/NH4+ exchange, but this exchange has not been examined in the skin of larval trout. Based on previous work, we hypothesized that, contrary to the gill model, JNa,in by the yolk sac skin of PH trout occurs independently of Jamm Following a 12 h exposure to high environmental ammonia (HEA; 0.5 mmol l-1 NH4HCO3; 600 µmol l-1 Na+; pH 8), Jamm by the gills of CYA trout and the yolk sac skin of PH larvae, which were isolated using divided chambers, increased significantly. However, this was coupled to an increase in JNa,in across the gills only, supporting our hypothesis. Moreover, gene expression of proteins involved in JNa,in [Na+/H+-exchanger-2 (NHE2) and H+-ATPase] increased in response to HEA only in the CYA gills. We further identified expression of the apical Rhesus (Rh) proteins Rhcg2 in putative pavement cells and Rhcg1 (co-localized with apical NHE2 and NHE3b and Na+/K+-ATPase) in putative peanut lectin agglutinin-positive (PNA+) ionocytes in gill sections. Similar Na+/K+-ATPase-positive cells expressing Rhcg1 and NHE3b, but not NHE2, were identified in the yolk sac epithelium. Overall, our findings suggest that the mechanisms of JNa,in and Jamm by the dominant exchange epithelium at two distinct stages of early development are fundamentally different.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。