The epigenetic mechanisms of nanotopography-guided osteogenic differentiation of mesenchymal stem cells via high-throughput transcriptome sequencing

通过高通量转录组测序研究纳米拓扑结构引导间充质干细胞成骨分化的表观遗传机制

阅读:8
作者:Longwei Lv, Yunsong Liu, Ping Zhang, Xiangsong Bai, Xiaohan Ma, Yuejun Wang, Hongyi Li, Li Wang, Yongsheng Zhou

Background

Nanotopography directs stem cell fate; however, the underlying mechanisms, especially those at the epigenetic level, remain vague. The TiO2-nanotube array, a classical example of nanotopography, is a good model to investigate topography-cell interactions because of its good controllability and easy manufacturing process. Previously, we found that a TiO2-nanotube array with an optimal diameter promoted osteogenic differentiation of human adipose-tissue-derived stem cells (hASCs).

Conclusion

Using next-generation sequencing, we illustrated the overall picture of the regulatory mechanisms of TiO2 nanotubes, thus providing a basis for future clinical applications of nanotopography in the field of bone tissue engineering. Our results offer insights into material-based nanomedicine and epigenetic therapy.

Methods

We used RNA sequencing and bioinformatics to reveal the overall gene expression profile of hASCs on TiO2-nanotube arrays.

Results

Bioinformatics analyses revealed that the epigenetic regulatory network plays an important role in TiO2-nanotube-guided osteogenic differentiation. Changes in cell adhesion and cytoskeletal reorganization are linked to epigenetic alterations, including upregulation of KDM4E and downregulation of histone deacetylases. Meanwhile, microRNAs, including miR-24-1-5p, miR-24-3 p, miR-154-3 p, miR-154-5 p, miR-433-5 p, miR-589-3 p, and miR-589-5 p were downregulated, whereas miR-186-5 p and miR-770-5 p were upregulated. Long non-coding RNAs, including LINC00941, LINC01279, and ZFAS1, were downregulated in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。