Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation

产前甜菜碱暴露通过改变 DNA 甲基化来调节公鸡下丘脑胆固醇代谢基因的表达

阅读:5
作者:Abdulrahman A Idriss, Yun Hu, Qinwei Sun, Longfei Jia, Yimin Jia, Nagmeldin A Omer, Halima Abobaker, Ruqian Zhao

Abstract

Cholesterol is essential for neuronal development and brain function. Previously we reported that in ovo administration of betaine modulates hepatic cholesterol metabolism in the chicken, yet it remains unknown whether maternal betaine affects the cholesterol content and the expression of cholesterol metabolic genes in chicken hypothalamus. In this study, eggs were injected with saline or betaine at 2.5 mg/egg, and the hatchlings were raised under the same condition until 64 d of age. Maternal betaine significantly (P = 0.05) increased the body weight and suppressed aggressive behavior of 64-day-old cockerels, in association with significantly (P < 0.05) up-regulated expression of 5-HTR1A receptor in the hypothalamus. Concurrently, betaine in ovo significantly increased (P < 0.05) the hypothalamic content of total cholesterol and cholesterol ester, which coincided with significantly up-regulated (P < 0.05) hypothalamic expression of cholesterol biosynthetic genes, such as sterol-regulatory element binding protein 2 and 3-hydroxy-3-methyl-glutaryl-CoA reductase as well as acetyl-CoA cholesterol acyltransferase 1, which converts free cholesterol to cholesterol ester for storage. In contrast, low density lipoprotein receptor, which mediates the cholesterol uptake, was significantly down-regulated (P < 0.05). In ovo betaine administration significantly enhanced the expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 (P < 0.05), which was associated with alterations of CpG methylation on the promoter of modified cholesterol metabolic genes. These results indicate that maternal betaine modulates hypothalamic cholesterol metabolism in cockerels through modifying DNA methylation on the promoter of cholesterol metabolic genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。