Cluster of Differentiation 36 Deficiency Aggravates Macrophage Infiltration and Hepatic Inflammation by Upregulating Monocyte Chemotactic Protein-1 Expression of Hepatocytes Through Histone Deacetylase 2-Dependent Pathway

分化簇 36 缺乏通过组蛋白去乙酰化酶 2 依赖途径上调肝细胞单核细胞趋化蛋白-1 表达,加重巨噬细胞浸润和肝脏炎症

阅读:4
作者:Shan Zhong, Lei Zhao, Yan Wang, Chang Zhang, Jun Liu, Pei Wang, Wei Zhou, Ping Yang, Zac Varghese, John F Moorhead, Yaxi Chen, Xiong Z Ruan

Aims

Cluster of differentiation 36 (CD36) is involved in the development of nonalcoholic steatohepatitis (NASH). Excess CD36 facilitates liver cells taking fatty acid and activates inflammatory signals to promote hepatic steatosis and inflammation. However, CD36 deficiency paradoxically promotes nonalcoholic fatty liver disease by unknown mechanisms. We explored the probable molecular mechanism of hepatic inflammation induced by CD36 deficiency.

Conclusion

CD36 deficiency promoted the development of NASH by facilitating the transcription of MCP-1 in hepatocytes due to the reduction of ROS and nuclear HDAC2. Antioxid. Redox Signal. 00, 000-000.

Results

CD36 deletion in mice (CD36-/- mice) specifically increased monocyte chemotactic protein-1 (MCP-1) in hepatocytes, promoted macrophage migration to the liver, and aggravated hepatic inflammatory response and fibrosis. The nuclear expression of histone deacetylase 2 (HDAC2), which highly expresses in wild-type hepatocytes and has an inhibitory effect on acetyl histone 3 (H3), was reduced in CD36-deficient hepatocytes. Consequently, the level of acetyl H3 binding to MCP-1 promoters was increased in CD36-deficient hepatocytes, causing hepatic-specific MCP-1 transcriptional activation. Reduction of nuclear HDAC2 in both CD36-/- mice liver and cultured hepatocytes was due to reduction of intracellular reactive oxygen species (ROS) level, while supplement of low-concentration hydrogen peroxide (H2O2) overcame the suppression of HDAC2 caused by CD36 deficiency, decreasing MCP-1 gene transcription and microphage migration. Innovation: Our results provide first evidence that decreased ROS production by CD36 deletion was also harmful for livers. The fine balance of CD36 plays an important role in maintaining balances of hepatic ROS and nuclear HDAC2, which could be a potential new therapeutic strategy for the prevention of NASH development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。