Conclusion
Our results suggest that the decrease in adipogenic-gene mRNA and clonogenic potential, as well as the accumulation of fibrotic proteins with metabolic alterations, could be a relevant mechanism controlling the number and size of neogenerated adipocytes and involved in alteration of adipose-tissue expansion.
Objective
The aim of this study was to examine the state of adipose tissue-derived mesenchymal stem cells (ASCs) from obese subjects with different metabolic profiles. Design: This was a 2-year study to enroll subjects who underwent bariatric surgery or cholecystectomy. Setting: University Hospital. Patients and intervention: Patients who underwent either bariatric surgery (20 morbidly obese) or cholecystectomy (40 subjects) participated in the study. Main outcome measures: ASCs were obtained from both visceral and subcutaneous adipose tissue. Adipogenic, fibrotic gene expression was quantified by quantitative polymerase chain reaction; Smad7 and fibroblast growth factor 2 were quantified by western blotting and enzyme-linked immunosorbent assay, respectively. The susceptibility of ASCs to apoptosis, their population doubling time, and their clonogenic potential were evaluated.
Results
The worsening metabolic profile of the patients was accompanied by a decrease in the intrinsic levels of adipogenic gene expression, reduced proliferation rate, clonogenic potential, and exportation of fibroblast growth factor 2 to the cell surface of the ASCs derived from both tissues. In addition, the ASCs from patients without metabolic syndrome showed differences in susceptibility to apoptosis and expression of TGFβ-signaling inhibitory protein Smad7 with respect to the ASCs from patients with metabolic syndrome.
