Catalpol Alleviates Ischemic Stroke Through Promoting Angiogenesis and Facilitating Proliferation and Differentiation of Neural Stem Cells via the VEGF-A/KDR Pathway

梓醇通过 VEGF-A/KDR 通路促进血管生成、促进神经干细胞增殖和分化,缓解缺血性中风

阅读:5
作者:Si Sun, Yitong Xu, Ningxi Yu, Meifeng Zhang, Jinghui Wang, Dong Wan, Zhen Tian, Huifeng Zhu

Abstract

Stroke is one of the leading causes of disability and death globally with a lack of effective therapeutic strategies. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and it has been shown to be protective against various neurological diseases. The potential roles of catalpol against ischemic stroke are still not completely clear. In this study, we examined the effect and mechanism of catalpol against ischemic stroke using in vivo rat distal middle cerebral artery occlusion (dMCAO) and in vitro oxygen-glucose deprivation (OGD) models. We demonstrated that catalpol indeed attenuated the neurological deficits caused by dMCAO and improved neurological function. Catalpol remarkably promoted angiogenesis, promoted proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ), and prevented neuronal loss and astrocyte activation in the ischemic cortex or hippocampal dentate gyrus (DG) in vivo. The vascular endothelial growth factor receptor 2 (KDR, VEGFR-2) inhibitor SU5416 and VEGF-A shRNA were used to investigate the underlying mechanisms. The results showed that SU5416 administration or VEGF-A-shRNA transfection both attenuated the effects of catalpol. We also found that catalpol promoted the proliferation of cultured brain microvascular endothelial cells (BMECs) and the proliferation and differentiation of NSCs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was also inhibited by SU5416. Moreover, catalpol was shown to protect NSCs against OGD indirectly by promoting BMEC proliferation in the co-cultured system. Taken together, catalpol showed therapeutic potential in cerebral ischemia by promoting angiogenesis and NSC proliferation and differentiation. The protective effects of catalpol were mediated through VEGF-A/KDR pathway activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。