Anti-microRNA-132 causes sevoflurane‑induced neuronal apoptosis via the PI3K/AKT/FOXO3a pathway

抗 microRNA-132 通过 PI3K/AKT/FOXO3a 通路引起七氟烷诱导的神经元凋亡

阅读:5
作者:Ping Dong, Xiyan Zhang, Jian Zhao, Dongliang Li, Liang Li, Bo Yang

Abstract

In the present study, the mechanisms underlying the protective effects of microRNA‑132 (miRNA‑132) on sevoflurane‑induced neuronal apoptosis were investigated. Reverse transcription‑quantitative polymerase chain reaction and gene microarray hybridization were used to analyze alterations in microRNA levels. Cell viability, apoptosis and caspase‑3/9 activity were measured using MTT, flow cytometry and caspase‑3/9 activity kits. Immunofluorescence staining and western blot analysis were used to measure protein expression of phosphoinositide 3‑kinase (PI3K) and phosphorylated (p‑)AKT, forkhead box O3a (FOXO3a). In sevoflurane‑induced rats, the expression of miRNA‑132 was downregulated, compared with that in negative control rats. The downregulation of miRNA‑132 increased neuronal apoptosis and the upregulation of miRNA‑132 inhibited neuronal apoptosis in the sevoflurane‑induced in vitro model. The downregulation of miRNA‑132 suppressed the protein expression of PI3K and p‑AKT, and suppressed the protein expression of FOXO3a in the sevoflurane‑induced in vitro model. The PI3K inhibitor increased the effects of anti‑miRNA‑132 on neuronal apoptosis through the AKT/FOXO3a pathway in the sevoflurane‑induced in vitro model. The promotion of FOXO3a inhibited the effects of anti‑miRNA‑132 on neuronal apoptosis through the AKT/FOXO3a pathway in the sevoflurane‑induced in vitro model. These data suggested that miRNA‑132 caused sevoflurane‑induced neuronal apoptosis via suppression of the PI3K/AKT/FOXO3a pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。