Cleaved PINK1 induces neuronal plasticity through PKA-mediated BDNF functional regulation

裂解的PINK1通过PKA介导的BDNF功能调节诱导神经元可塑性

阅读:5
作者:Smijin K Soman, David Tingle, Raul Y Dagda, Mariana Torres, Marisela Dagda, Ruben K Dagda

Abstract

Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKβ. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKβ. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。