Understanding the Underlying Molecular Mechanisms of Meiotic Arrest during In Vitro Spermatogenesis in Rat Prepubertal Testicular Tissue

了解大鼠青春期前睾丸组织体外精子发生过程中减数分裂停滞的潜在分子机制

阅读:5
作者:Justine Saulnier, Frédéric Chalmel, Marion Delessard, Laura Moutard, Tony Pereira, François Fraissinet, Ludovic Dumont, Aurélie Rives-Feraille, Christine Rondanino, Nathalie Rives

Abstract

In vitro spermatogenesis appears to be a promising approach to restore the fertility of childhood cancer survivors. The rat model has proven to be challenging, since germ cell maturation is arrested in organotypic cultures. Here, we report that, despite a meiotic entry, abnormal synaptonemal complexes were found in spermatocytes, and in vitro matured rat prepubertal testicular tissues displayed an immature phenotype. RNA-sequencing analyses highlighted up to 600 differentially expressed genes between in vitro and in vivo conditions, including genes involved in blood-testis barrier (BTB) formation and steroidogenesis. BTB integrity, the expression of two steroidogenic enzymes, and androgen receptors were indeed altered in vitro. Moreover, most of the top 10 predicted upstream regulators of deregulated genes were involved in inflammatory processes or immune cell recruitment. However, none of the three anti-inflammatory molecules tested in this study promoted meiotic progression. By analysing for the first time in vitro matured rat prepubertal testicular tissues at the molecular level, we uncovered the deregulation of several genes and revealed that defective BTB function, altered steroidogenic pathway, and probably inflammation, could be at the origin of meiotic arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。