The XBP1‒MARCH5‒MFN2 Axis Confers Endoplasmic Reticulum Stress Resistance by Coordinating Mitochondrial Fission and Mitophagy in Melanoma

XBP1-MARCH5-MFN2 轴通过协调黑色素瘤中的线粒体裂变和线粒体自噬赋予内质网应激抵抗力

阅读:10
作者:Huina Wang, Xiuli Yi, Sen Guo, Sijia Wang, Jinyuan Ma, Tao Zhao, Qiong Shi, Yangzi Tian, Hao Wang, Lintao Jia, Tianwen Gao, Chunying Li, Weinan Guo

Abstract

Melanoma cells are relatively resistant to endoplasmic reticulum (ER) stress, which contributes to tumor progression under stressful conditions and renders tolerance to ER stress‒inducing therapeutic agents. Mitochondria are tightly interconnected with ER. However, whether mitochondria play a role in regulating ER stress resistance in melanoma remains elusive. In this study, we reported that the XBP1‒MARCH5‒MFN2 axis conferred ER stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. Our integrative bioinformatics first revealed that the downregulation of mitochondrial genes was highly correlated with unfolded protein response activation in melanoma. Then we proved that mitochondrial fission and mitophagy were prominently induced to contribute to ER stress resistance both in vitro and in vivo by maintaining mitochondrial function. Mechanistically, the activation of IRE1α/ATF6-XBP1 branches of unfolded protein response promoted the transcription of E3 ligase MARCH5 to facilitate the ubiquitination and degradation of MFN2, which thereby triggered mitochondrial fission and mitophagy under ER stress. Together, our findings show a regulatory axis that links mitochondrial fission and mitophagy to the resistance to ER stress. Targeting mitochondrial quality control machinery can be exploited as an approach to reinforce the efficacy of ER stress‒inducing agents against cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。