Downregulation of Preso protects against ischemic/reperfusion-mediated neuronal injury through regulating PSD95-nNOS/YAP pathways

Preso 的下调通过调节 PSD95-nNOS/YAP 通路防止缺血/再灌注介导的神经元损伤

阅读:10
作者:Rundong Chen, Lei Qian, Jin Fu, Jiajun Qin, Xianzhen Chen, Xiaolong Xu

Abstract

Cerebral ischemic/reperfusion (I/R) injury has become a great challenge harming patients' life. This study aims to explore the regulatory role of Preso during cerebral I/R injury and to elucidate the potential mechanism. Here, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated PC12 cell model to evaluate the expression and role of Preso following cerebral I/R injury. Histopathological injury and infarct size were assessed by hematoxylin and eosin (HE) and 2,3,5-Triphenyltertrazolium chloride (TTC) staining. Double immunofluorescence staining was performed to assess neuronal apoptosis in brain tissues. Cell counting kit-8 (CCK-8) and flow cytometry were performed to evaluate cell viability and apoptosis, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) levels were detected using their respective detection kits, and the expression of corresponding proteins was examined adopting Western blot. The results showed that Preso was upregulated in OGD/R-induced PC12 cells and MCAO rats. Preso knockdown significantly reduced OGD/R-caused viability loss, apoptosis and oxidative stress in PC12 cells, and reduced infarct size, attenuated histological injury, and inhibited apoptosis and oxidative stress in the brain tissues from MCAO rats, as well as inhibiting the expression of postsynaptic density protein-95 (PSD95) and nitric oxide synthase (nNOS) and repressing YAP phosphorylation in vitro. In addition, the protective role of Preso knockdown against cerebral I/R injury was partly strengthened by IC87201, the nNOS/PSD95 interaction inhibitor, or weakened by Verteporfin (Vert), an inhibitor of YAP. In conclusion, Perso knockdown might exert a protective role against cerebral I/R injury via regulating PSD95-nNOS and YAP pathways, providing a potential therapeutic target for the treatment of ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。