Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy

优化的可生物降解聚合物储库介导的局部和持续共递送树突状细胞和溶瘤腺病毒,共表达 IL-12 和 GM-CSF,用于癌症免疫治疗

阅读:6
作者:Eonju Oh, Jung-Eun Oh, JinWoo Hong, YoonHo Chung, Yunki Lee, Ki Dong Park, Sungwan Kim, Chae-Ok Yun

Abstract

Administration of dendritic cells (DCs) combined with oncolytic adenovirus (Ad) expressing antitumor cytokines induces a potent antitumor effect and antitumor immunity by ameliorating the immunosuppressive tumor microenvironment. However, this combination therapy has significant limitations due to rapid dissemination and inactivation of the therapeutics at the tumor site, necessitating multiple injections of both therapeutics. To overcome these limitations, we have utilized gelatin-based hydrogel to co-deliver oncolytic Ad co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (oAd) and DCs for sustained release of both therapeutics. The injectable and biodegradable hydrogels were prepared by mixing the polymer solutions containing horseradish peroxidase and hydrogen peroxide. Gel matrix enabled sustained release of both oAd and DCs while preserving their biological activity over a considerable time period, leading to efficient retention of both therapeutics in tumor tissue. Further, tumors treated with oAd- and DC-loaded gel (oAd+DC/gel) showed a significantly greater expression level of IL-12, GM-CSF, and interferon-γ (IFN-γ) than either single treatment (oAd or DC) or oAd in combination with DC (oAd+DC), resulting in efficient activation of both endogenous and exogenous DCs, migration of DCs to draining lymph nodes, and tumor infiltration of CD4+ and CD8+ T cells. Moreover, oAd+DC/gel resulted in a significantly higher number of tumor-specific IFN-γ-secreting immune cells compared with oAd+DC. Lastly, oAd+DC/gel significantly attenuated tumor-mediated thymic atrophy, which is associated with immunosuppression in the tumor microenvironment, compared with oAd+DC. Taken together, these results demonstrate that gelatin gel-mediated co-delivery of oncolytic Ad and DCs might be a promising strategy to efficiently retain both therapeutics in tumor tissue and induce a potent antitumor immune response for an extended time period via a single administration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。