Epigenome editing of the CFTR-locus for treatment of cystic fibrosis

CFTR 基因座的表观基因组编辑用于治疗囊性纤维化

阅读:10
作者:Ami M Kabadi, Leah Machlin, Nikita Dalal, Rhianna E Lee, Ian McDowell, Nirav N Shah, Lauren Drowley, Scott H Randell, Timothy E Reddy

Background

Mechanisms governing the diversity of CFTR gene expression throughout the body are complex. Multiple intronic and distal regulatory elements are responsible for regulating differential CFTR expression across tissues.

Conclusions

CRISPR/dCas9-based epigenome-editing provides a previously unexplored tool for interrogating CFTR enhancer function. Here, we demonstrate that therapeutic interventions that increase the expression of CFTR may improve the efficacy of CFTR modulators. A better understanding CFTR regulatory mechanisms could uncover novel therapeutic interventions for the development of cystic fibrosis therapies.

Methods

Drawing on published data, 18 high-priority genomic regions were identified and interrogated for CFTR-enhancer function using CRISPR/dCas9-based epigenome editing tools. Each region was evaluated by dCas9p300 and dCas9KRAB for its ability to enhance or repress CFTR expression, respectively.

Results

Multiple genomic regions were tested for enhancer activity using CRISPR/dCas9 epigenome editing. dCas9p300 mediates a significant increase in CFTR mRNA levels when targeted to the promoter and a region 44 kb upstream of the transcriptional start site in a CFTR-low expressing cell line. Multiple gRNAs targeting the promoter induced a robust increase in CFTR protein levels. In contrast, dCas9KRAB-mediated repression is much more robust with 10 of the 18 evaluated genomic regions inducing CFTR protein knockdown. To evaluate the therapeutic efficacy of modulating CFTR gene regulation, dCas9p300 was used to induce elevated levels of CFTR from the endogenous locus in ΔF508/ΔF508 human bronchial epithelial cells. Ussing chamber studies demonstrated a synergistic increase in ion transport in response to CRISPR-induced expression of ΔF508 CFTR mRNA along with VX809 treatment. Conclusions: CRISPR/dCas9-based epigenome-editing provides a previously unexplored tool for interrogating CFTR enhancer function. Here, we demonstrate that therapeutic interventions that increase the expression of CFTR may improve the efficacy of CFTR modulators. A better understanding CFTR regulatory mechanisms could uncover novel therapeutic interventions for the development of cystic fibrosis therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。