Unspecific binding of cRNA probe to plaques in two mouse models for Alzheimer's disease

cRNA 探针与两种小鼠阿尔茨海默病模型中的斑块非特异性结合

阅读:5
作者:Anne Schaarschuch, Christoph Redies, Nicole Hertel; Molecular Anatomy and Dysfunction of Mouse Development Group

Background

Alzheimer's disease (AD) is characterized by the pathological deposition of amyloid-β (Aβ) protein-containing plaques. Microglia and astrocytes are commonly attracted to the plaques by an unknown mechanism that may involve cell adhesion. One cell adhesion family of proteins, the cadherins, are widely expressed in the central nervous system. Therefore, our study was designed to map the expression of cadherins in AD mouse brains. A particular focus was on plaques because diverse mRNA-species were found in plaques and their surrounding area in brains of AD patients.

Conclusions

We demonstrate unspecific binding of cRNA probes to plaques in two mouse models for AD. The widespread and general staining of the plaques prevented us from studying endogenous expression of cadherins in transgenic brain by in situ hybridization.

Methods

In this study, we used in situ hybridization to visualize cadherin expression in brains of two mouse models for AD (APP/PS1 and APP23).

Results

A variable number of plaques was detected in transgenic brain sections, depending on the probe used. Our first impression was that the cadherin probes visualized specific mRNA expression in plaques and that endogenous staining was unaffected. However, control experiments revealed unspecific binding with sense probes. Further experiments with variations in probe length, probe sequence, molecular tag and experimental procedure lead us to conclude that cRNA probes bind generally and in an unspecific manner to plaques. Conclusions: We demonstrate unspecific binding of cRNA probes to plaques in two mouse models for AD. The widespread and general staining of the plaques prevented us from studying endogenous expression of cadherins in transgenic brain by in situ hybridization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。