Bio-Synthesis of Aspergillus terreus Mediated Gold Nanoparticle: Antimicrobial, Antioxidant, Antifungal and In Vitro Cytotoxicity Studies

土曲霉介导的金纳米粒子的生物合成:抗菌、抗氧化、抗真菌和体外细胞毒性研究

阅读:10
作者:Rahul Chandra Mishra, Rishu Kalra, Rahul Dilawari, Mayurika Goel, Colin J Barrow

Abstract

Gold nanoparticles (GNP) were bio-fabricated utilizing the methanolic extract of the endophytic isolate Aspergillus terreus. The biosynthesised gold nanoparticles (GNP023) were characterised using UV-visible spectroscopy (UV-Vis); transmission electron microscopy (TEM), Fourier-transform nfrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies. The bio-fabricated GNP023 displayed a sharp SPR peak at 536 nm, were spherically shaped, and had an average size between 10-16 nm. The EDX profile confirmed the presence of gold (Au), and XRD analysis confirmed the crystalline nature of GNP023. The antimicrobial activity of GNP023 was investigated against several food-borne and phytopathogens, using in vitro antibacterial and antifungal assays. The maximum zone of inhibition was observed for S. aureus and V. cholera at 400 μg /mL, whereas inhibition in radial mycelial growth was observed against Fusarium oxysporum and Rhizoctonia solani at 52.5% and 65.46%, respectively, when challenged with GNP023 (200 μg/mL). Moreover, the gold nanoparticles displayed significant antioxidant activity against the ABTS radical, with an IC50 of 38.61 µg/mL, and were non-toxic when tested against human kidney embryonic 293 (HEK293) cells. Thus, the current work supports the application of myco-synthesised gold nanoparticles as a versatile antimicrobial candidate against food-borne pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。