Conclusion
This study found that metabolic reprogramming, particularly mitochondrial hyperactivation, is a core mechanism underlying tumorigenesis induced by the synergistic effect of Ptpn11D61G/+ mutation and arsenic exposure. Furthermore, these findings suggested mTOR is a therapeutic target for Ptpn11-associated cancers.
Methods
Arsenic-transformed Ptpn11+/+ (WT-As) and Ptpn11D61G/+ -mutant (D61G-As) mouse embryonic fibroblasts (MEFs) were established by chronic treatment of low-dose arsenic. We used cell counting, plate colony and soft agar colony formation, and a nude mouse xenograft model to detect malignant transformation and tumorigenesis in vitro and in vivo. To detect mitochondrial oxidative phosphorylation (OXPHOS), we used Seahorse real-time cell metabolic analysis as well as adenosine triphosphate (ATP) and ROS production assays. Lastly, we examined mTOR signaling pathway changes by western blotting.
Objective
To explore the synergistic effect and metabolic mechanism of chronic arsenic exposure and PTPN11 gain-of-function mutation on tumorigenesis.
Results
Low-dose arsenic exposure promoted WT MEFs proliferation and exacerbated malignancy driven by Ptpn11D61G/+ mutation. Additionally, Ptpn11D61G/+ -mutant MEFs exhibited increased mitochondrial metabolism and low-dose arsenic amplified this malignant metabolic activity. Mechanistically, the mTOR signaling pathway was activated in Ptpn11D61G/+ -mutant MEFs and was further phosphorylated in arsenic-treated MEFs expressing Ptpn11D61G/+ . Critically, tumorigenesis induced by the synergistic effect of low-dose arsenic and Ptpn11D61G/+ mutation was prevented by mTOR pathway inhibition via rapamycin.
