On Thermal Distribution for Darcy-Forchheimer Flow of Maxwell Sutterby Nanofluids over a Radiated Extending Surface

关于 Maxwell Sutterby 纳米流体在辐射延伸表面上的 Darcy-Forchheimer 流动的热分布

阅读:4
作者:Wen Wang, Mohammed M M Jaradat, Imran Siddique, Abd Allah A Mousa, Sohaib Abdal, Zead Mustafa, Hafiz Muhammad Ali

Abstract

This study addresses thermal transportation associated with dissipated flow of a Maxwell Sutterby nanofluid caused by an elongating surface. The fluid passes across Darcy-Forchheimer sponge medium and it is affected by electromagnetic field applied along the normal surface. Appropriate similarity transforms are employed to convert the controlling partial differential equations into ordinary differential form, which are then resolved numerically with implementation of Runge-Kutta method and shooting approach. The computational analysis for physical insight is attempted for varying inputs of pertinent parameters. The output revealed that the velocity of fluid for shear thickening is slower than that of shear thinning. The fluid temperature increases directly with Eckert number, and parameters of Cattaneo-Christov diffusion, radiation, electric field, magnetic field, Brownian motion and thermophoresis. The Nusselt number explicitly elevated as the values of radiation and Hartmann number, as well as Brownian motion, improved. The nanoparticle volume fraction diminishes against Prandtl number and Lewis number.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。