Pharmacological characterization of recombinant NR1/NR2A NMDA receptors with truncated and deleted carboxy termini expressed in Xenopus laevis oocytes

在非洲爪蟾卵母细胞中表达的羧基末端截短和缺失的重组 NR1/NR2A NMDA 受体的药理学表征

阅读:5
作者:C A Puddifoot, P E Chen, R Schoepfer, D J A Wyllie

Background and purpose

The carboxy terminal domain (CTD) of NR2 N-methyl-d-aspartate receptor (NMDAR) subunits interacts with numerous scaffolding and signal transduction proteins. Mutations of this region affect trafficking and downstream signalling of NMDARs. This study determines to what extent characteristic pharmacological properties of NR2A-containing NMDARs are influenced by this key functional domain. Experimental approach: Using recombinant receptor expression in Xenopus laevis oocytes and two electrode voltage clamp recordings we characterized pharmacological properties of rat NR1/NR2A NMDARs with altered CTDs. We assessed the effects of truncating [at residue Iso1098; NR2A(trunC)] and deleting [from residue Phe822; NR2A(delC)] the CTD of NR2A NMDAR subunits on agonist potencies, channel block by Mg(2+) and memantine and potentiation of NMDAR-mediated responses by chelating contaminating divalent cations. Key

Purpose

The carboxy terminal domain (CTD) of NR2 N-methyl-d-aspartate receptor (NMDAR) subunits interacts with numerous scaffolding and signal transduction proteins. Mutations of this region affect trafficking and downstream signalling of NMDARs. This study determines to what extent characteristic pharmacological properties of NR2A-containing NMDARs are influenced by this key functional domain. Experimental approach: Using recombinant receptor expression in Xenopus laevis oocytes and two electrode voltage clamp recordings we characterized pharmacological properties of rat NR1/NR2A NMDARs with altered CTDs. We assessed the effects of truncating [at residue Iso1098; NR2A(trunC)] and deleting [from residue Phe822; NR2A(delC)] the CTD of NR2A NMDAR subunits on agonist potencies, channel block by Mg(2+) and memantine and potentiation of NMDAR-mediated responses by chelating contaminating divalent cations. Key

Results

Truncation or deletion of the CTD of NR2A NMDAR subunits did not affect glutamate potency [EC(50) = 2.2 micromol.L(-1), NR2A(trunC); 2.7 micromol.L(-1), NR2A(delC) compared with 3.3 micromol.L(-1), NR2A(WT)] but did significantly increase glycine potency [EC(50) = 500 nmol.L(-1), NR2A(trunC); 900 nmol.L(-1), NR2A(delC) compared with 1.3 micromol.L(-1), NR2A(WT)]. Voltage-dependent Mg(2+) block of NR2A(WT)- and NR2A(trunC)-containing NMDARs was similar but low concentrations of Mg(2+) (1 micromol.L(-1)) potentiated NR1/NR2A(delC) NMDARs. Memantine block was not affected by changes to the structure of the NR2A CTD. EDTA-induced potentiation was similar at each of the three NMDAR constructs. Conclusions and implications: Of the parameters studied only minor influences of the CTD were observed; these are unlikely to compromise interpretation of studies that make use of CTD-mutated recombinant receptors or transgenic mice in investigations of the role of the CTD in NMDAR signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。