Interaction of Interleukin-17A with a Th2 Response in a Mouse Model of Allergic Airway Inflammation

白细胞介素-17A 与小鼠过敏性气道炎症模型中的 Th2 反应的相互作用

阅读:4
作者:Karin Peters, Stefanie Ernst, Marcus Peters

Background

A total of 262 million people worldwide suffer from asthma and 461000 people died from it in 2019. Asthma is a disease with different endotypes defined by the granulocytes found in the asthmatic lung. In allergic asthma, the eosinophilic endotype is present, driven by a TH2 response. A TH17 immune response leads to the neutrophil endotype. This often causes uncontrolled asthma and is triggered by pollutants, microbes, and oxidative stress. It has been described that a significant number of patients with eosinophilic asthma develop mixed granulocytic asthma over time. The severity of asthma in the mixed endotype is related to the proportion of neutrophils in the lungs.

Conclusions

The TH2 response increased the sensitivity to IL-17A in a mouse asthma model as well as in human cell lines.

Methods

To this end, we used a mouse model to induce allergic asthma followed by an aerosol challenge with ovalbumin. To investigate the role of IL-17A, we administered IL-17A intranasally during the challenge phase.

Purpose

In this report, we address the question of how a TH2 response interacts with IL-17A in allergic asthma.

Results

IL-17A alone did not elicit an immune response, whereas in combination with allergic asthma, it resulted in a shift of the asthmatic endotype from eosinophilic to neutrophilic. TGFβ1 was increased in these lungs compared to asthmatic lungs without IL-17A, as was the expression of the IL-17A receptor subunits IL-17RA and IL-17RC. In cultures with human cells, we also found that IL-17A increased the expression of its receptors only in combination with IL-13. We also found this effect for IL-8, which attracts neutrophils in humans. Conclusions: The TH2 response increased the sensitivity to IL-17A in a mouse asthma model as well as in human cell lines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。