Background and purpose
The voltage-gated Na(+) channels (Na(v)) and their corresponding current (I(Na)) are involved in several cellular processes, crucial to metastasis of cancer cells. We investigated the effects of eicosapentaenoic (EPA), an omega-3 polyunsaturated fatty acid, on I(Na) and metastatic functions (cell proliferation, endocytosis and invasion) in human and rat prostate cancer cell lines (PC-3 and Mat-LyLu cells). Experimental approach: The whole-cell voltage clamp technique and conventional/quantitative real-time reverse transcriptase polymerase chain reaction analysis were used. The presence of Na(v) proteins was shown by immunohistochemical
Purpose
The voltage-gated Na(+) channels (Na(v)) and their corresponding current (I(Na)) are involved in several cellular processes, crucial to metastasis of cancer cells. We investigated the effects of eicosapentaenoic (EPA), an omega-3 polyunsaturated fatty acid, on I(Na) and metastatic functions (cell proliferation, endocytosis and invasion) in human and rat prostate cancer cell lines (PC-3 and Mat-LyLu cells). Experimental approach: The whole-cell voltage clamp technique and conventional/quantitative real-time reverse transcriptase polymerase chain reaction analysis were used. The presence of Na(v) proteins was shown by immunohistochemical
Results
A transient inward Na(+) current (I(Na)), highly sensitive to tetrodotoxin, and Na(V) proteins were found in these cells. Expression of Na(V)1.6 and Na(V)1.7 transcripts (SCN8A and SCN9A) was predominant in PC-3 cells, while Na(V)1.7 transcript (SCN9A) was the major component in Mat-LyLu cells. Tetrodotoxin or synthetic small interfering RNA targeted for SCN8A and SCN9A inhibited metastatic functions (endocytosis and invasion), but failed to inhibit proliferation in PC-3 cells. Exposure to EPA produced a rapid and concentration-dependent suppression of I(Na). In cells chronically treated (up to 72h) with EPA, the EPA content of cell lipids increased time-dependently, while arachidonic acid content decreased. Treatment of PC-3 cells with EPA decreased levels of mRNA for SCN9A and SCN8A, cell proliferation, invasion and endocytosis.
