Loss of MeCP2 in immature neurons leads to impaired network integration

未成熟神经元中 MeCP2 的缺失导致网络整合受损

阅读:7
作者:Yi Sun, Yu Gao, Joseph J Tidei, Minjie Shen, Johnson T Hoang, Daniel F Wagner, Xinyu Zhao

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations or deletions in Methyl-CpG-binding Protein 2 (MeCP2), a brain-enriched transcriptional regulator. MeCP2 is highly expressed during neuronal maturation and its deficiency results in impaired dendritic morphogenesis and reduced dendritic spine numbers in developing neurons. However, whether MeCP2 deficiency impacts the integration of new neurons has not been directly assessed. In this study, we developed a modified rabies virus-mediated monosynaptic retrograde tracing method to interrogate presynaptic integration of MeCP2-deficient new neurons born in the adult hippocampus, a region with lifelong neurogenesis and plasticity. We found that selective deletion of MeCP2 in adult-born new neurons impaired their long-range connectivity to the cortex, whereas their connectivity within the local hippocampal circuits or with subcortical regions was not significantly affected. We further showed that knockdown of MeCP2 in primary hippocampal neurons also resulted in reduced network integration. Interestingly, (1-3) insulin-like growth factor-1 (IGF-1), a small peptide under clinical trial testing for RTT, rescued neuronal integration deficits of MeCP2-deficient neurons in vitro but not in vivo. In addition, (1-3) IGF-1 treatment corrected aberrant excitability and network synchrony of MeCP2-deficient hippocampal neurons. Our results indicate that MeCP2 is essential for immature neurons to establish appropriate network connectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。