Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces

利用荧光假单胞菌的 Lap 系统可逆地定制细菌细胞表面

阅读:5
作者:T Jarrod Smith, Holger Sondermann, George A O'Toole

Abstract

Initial attachment to a surface is a key and highly regulated step in biofilm formation. In this study, we present a platform for reversibly functionalizing bacterial cell surfaces with an emphasis on designing biofilms. We engineered the Lap system of Pseudomonas fluorescens Pf0-1, which is normally used to regulate initial cell surface attachment, to display various protein cargo at the bacterial cell surface and control extracellular release of the cargo in response to changing levels of the second messenger c-di-GMP. To accomplish this goal, we fused the protein cargo between the N-terminal retention module and C-terminal secretion signal of LapA and controlled surface localization of the cargo with natural signals known to stimulate or deplete c-di-GMP levels in P. fluorescens Pf0-1. We show this system can tolerate large cargo in excess of 500 amino acids, direct P. fluorescens Pf0-1 to surfaces it does not typically colonize, and program this microbe to sequester the toxic medal cadmium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。