PIE-1 Translation in the Germline Lineage Contributes to PIE-1 Asymmetry in the Early Caenorhabditis elegans Embryo

PIE-1 在生殖细胞系中的翻译导致早期秀丽隐杆线虫胚胎中的 PIE-1 不对称

阅读:7
作者:Timothy J Gauvin, Bingjie Han, Michael J Sun, Erik E Griffin

Abstract

In the C. elegans embryo, the germline lineage is established through successive asymmetric cell divisions that each generate a somatic and a germline daughter cell. PIE-1 is an essential maternal factor that is enriched in embryonic germline cells and is required for germline specification. We estimated the absolute concentration of PIE-1::GFP in germline cells and find that PIE-1::GFP concentration increases by roughly 4.5 fold, from 92 nM to 424 nM, between the 1 and 4-cell stages. Previous studies have shown that the preferential inheritance of PIE-1 by germline daughter cells and the degradation of PIE-1 in somatic cells are important for PIE-1 enrichment in germline cells. In this study, we provide evidence that the preferential translation of maternal PIE-1::GFP transcripts in the germline also contributes to PIE-1::GFP enrichment. Through an RNAi screen, we identified Y14 and MAG-1 (Drosophila tsunagi and mago nashi) as regulators of embryonic PIE-1::GFP levels. We show that Y14 and MAG-1 do not regulate PIE-1 degradation, segregation or synthesis in the early embryo, but do regulate the concentration of maternally-deposited PIE-1::GFP. Taken together, or findings point to an important role for translational control in the regulation of PIE-1 levels in the germline lineage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。